Introducing STEM Into The Classroom

IT'S REALLY NOT THAT HARD!!

- David Ingham
 Teacher 49 years
 Principal 30 Years
 Writing Team first National Science Profiles
- Contributing author Science Alive

► WHAT IS STEM? S - SCIENCE T - TECHNOLOGY ► - ENGINEERING ► M - MATHEMATICS

YOU CAN ADD ARTS TO MAKESTEAM!!

Each component forms part of the same unit of work or even lesson!

COMPONENT PARTS: SCIENCE - There are two elements to a Science Program 1. Understanding a particular Science concept.

2 Science Method

Science method: An experiment is designed to test one variable. All other aspects of the experiment MUST remain the same!!

► TECHNOLOGY ► TECHNOLOGY MODEL: ► DESIGN ► BUILD ► TEST ► OPTIMISE THEN TEST AGAIN

ENGINEERING:

What is the best way to build your design?

What tools and processes do I need?

Can I make it more effectively?

MATHEMATICS:

Mathematics is a key component of just about everything we do. It involves collecting analysing and presenting data.

WHY STEM?

We all learn more effectively by doing. Practical learning take our conceptual understanding and allows us to apply it in a real life situation. This builds and deepens our ideas and concepts and allows us to effectively develop our ideas.

STEM IN THE PRIMARY SCHOOL

A few words about Piaget!

- Age
- Characteristics
- Goal
- Birth to 18-24 months old
- Motor activity without use of symbols. All things learned are based on experiences, or trial and error.
- Object permanence
- 2 to 7 years old
- Development of language, memory, and imagination. Intelligence is both egocentric and intuitive.
- Symbolic thought

Preoperational 2 to

2 to 7 years old

Development of language, memory, and imagination. Intelligence is both egocentric and intuitive.

Symbolic thought

Concrete operational 7 to 11 years old

More logical and methodical manipulation of symbols. Less egocentric, and more aware of the outside world and events.

Operational thought

Formal operational

Adolescence to adulthood

Use of symbols to relate to abstract concepts. Able to make hypotheses and grasp abstract concepts and relationships.

Abstract concepts

What can expect from children of this age?

- Children think and work in concrete terms
- Explaining concepts should avoid abstract explanations.

What does a STEM unit/lesson look like?

Each component of STEM is represented.

Practical focus

Introducing STEM - FLIGHT

Science - Bernoulli Principle

- Technology Designing and testing a paper aircraft.
- Building and optimising the aircraft.
 Measuring, comparing and presenting performance data,

Now we know how an aircraft stays up, lets make one and test it. Your task is to design and build a paper aircraft that will fly the furthest.

- We test all aircraft and spreadsheet the results!
- From this we can graph the results.
- From the graph we can draw conclusions of which designs were more effective.
- This could lead to a redesign over and over.